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Abstract-A new approach to the stochastic modelling of fractures is developed using data acquired in hori- 
zontal wells and applied to one-dimensional simulations. It differs from previous studies in the use of both 
L&y-stable statistics to describe the fracture attributes and of a (multifractal) strain-based model to create the 
spatial distribution. The structure of the multifractal strain is generated with a multiplicative cascade and used 
as a template or guide in the simulation. Resulting simulations have scale-invariant structure. Spacing distri- 
bution functions depend on the spatial partitioning of strain. For the case where strain distribution is homo- 
geneous an approximate negative exponential spacing distribution results. Heterogeneous strain, exhibiting 
intermittency, leads to power-law (fractal) spacing distributions and spatial clustering. When plotting spacing 
as log-log cumulative frequency, the slope (fractal dimension) quantifies the degree of clustering. Small fractal 
dimensions are indicative of more clustering than large ones. the degree of clustering decreasing with an 
increase in fractal dimension. c~ 1998 Elsevier Science Ltd. All rights reserved 

INTRODUCTION 

The characterisation of joints and subseismic faults, 

known to exist in the interwell region, remains an 

unresolved problem. Examination of data from differ- 

ent scales is common in attempting to evaluate the dis- 

tribution and significance of joints or faults in 

reservoirs. Core and wireline logs can sample either 

type of discontinuity, but they access an extremely 

small reservoir volume. Seismic imaging can resolve 

large displacement faults, yet fails to delineate small- 

scale brittle features. Engineering information from 

pressure transient or tracer tests provide a response 

from the interwell scale, but one that averages over the 

flow properties of a fracture network and does not 

constrain its geometry. One approach for estimating 

the distribution of structural heterogeneity in the inter- 

well region is stochastic modelling. In this process, it is 

necessary to characterise statistically the attributes 

(length, displacement, aperture, spacing, orientation) 

associated with faults or joints and their spatial distri- 

bution (Gauthier and Lake, 1993). 

Observations indicate that it is possible to describe 

fracture attributes with a variety of statistical distri- 
butions. Joint length and aperture are often interpreted 

to follow a log-normal distribution (Long and Billaux, 

1987). More recently, numerous studies (Childs et al., 
1990; Heffer and Bevan, 1990; Marrett and 

Allmendinger, 1991), covering a range of scale from 

outcrop to seismic, suggest that fault systems have 
attributes that follow a power-law or fractal distri- 

bution. These distributions offer the enticing potential 
of using observations at some large scale to estimate 

statistical characteristics at some smaller scale. 

In contrast to the characterisation and analysis of 
attribute distributions, spatial distribution of fracture 
systems has been less successful. In particular, there is 
no technique for incorporating scale-invariant beha- 

viour into the spatial arrangement of stochastic faults 
or joints. Poisson models of spatial distribution con- 
sider that fractures are independent and lack spatial 
correlation. As such, they necessarily lead to negative 
exponential spacing distributions and fail to account 
for the clustering of joints (Laubach, 1991) or faults 
(Gillespie et al., 1993) often observed in outcrop. 
Examples of negative exponential spacing in fault sys- 
tems are rare (Brooks et al., 1996). Other reports indi- 
cate that joint spacing is often log-normal (Narr and 
Suppe, 1991) or fractal (Belfield and Sovich, 1995). 
Log-normal or fractal spacing statistics indicate that 
fractures are not distributed independently. Despite 
this, the process of randomly placing objects and 
assigning attributes chosen from a defined statistical 
distribution has been used extensively to model frac- 
tures in hydrologic systems (Long rt al., 1982; Cacas 
et al., 1990; Chil& and de Marsily, 1993). Similar 
marked point processes have been used to define the 
size and spatial distribution of subseismic faults, treat- 
ing them as random objects (Munthe et al., 1993; 
Godderij et ul., 1995). Parent/daughter models (Hestir 
et al., 1987) distribute the parents (e.g. larger scale 
faults) at random and then cluster smaller ones 
(daughters) around them. 

Early attempts at assessing the scale-invariant nature 
of fracture spatial distribution involved box-counting 
on outcrops (Barton and Larson, 1985). When the 
number of boxes containing a fracture segment was 
plotted against box size on log-log coordinates, a non- 
integer slope was found, indicating fractal behaviour. 
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However, other outcrop studies found either that frac- 
ture spatial distribution was characterised by a log&og 

straight line having an integer slope (Odling, 1992) or 
a distribution that could not be described by a single 

logPlog straight line (Chilks, 1988). Additional studies 
on both faults and joints have found a similar inability 
of single straight logglog lines to describe the spatial 

distribution (Walsh and Watterson, 1993; Gillespie ct 
r/l., 1993). Furthermore. it seems reasonable to assume 
that strain magnitude and distribution will play ;I 

major role in dictating the spatial statistics (Wu et trl., 
1995; Becker and Gross, 1996) of these systems. 

The present study examines an alternative approach 
to the stochastic modelling of fractures. It differs from 
previous studies in the use of both L&y-stable sta- 
tistics to describe the attributes of fracture systems and 

a (multifractal) strain-based model to create the spatial 
distribution. Unlike other methods that treat attributes 
and spatial distribution independently, multifractals 
provide a scale-invariant coupling of physical charac- 

teristic to spatial distribution. The ability to incorpor- 
ate both spatial clustering and scaling in stochastic 

simulations has led to their increasing use in the geo- 
physical sciences (Main, 1996). The basic approach is 

to generate a strain distribution using a multiplicative 
cascade where random multipliers are chosen from a 
L&y-stable distribution. This spatial strain distribution 
can be thought of as a template upon which stochastic 
fractures with assigned displacements or apertures are 

distributed. Spatial distribution of the fractures is con- 
strained by the allocated strain. Simulations using 
different spatial distributions of strain, ranging from 

homogeneous to heterogeneous, lead to distinct spa- 
cing statistics. It is possible to quantify the degree of 
clustering from the resulting spacing distribution func- 

tions. 

It is important to emphasise two factors relating to 
the data that form the basis of the analysis here. One. 
is that the data come from horizontal wells and, as 
such, both the data and simulations are one-dimen- 

sional. Second, the fractures that comprise the data 
are probably joints with some possible small displace- 
ment faults. I use the term fracture in a generic con- 
text, treating faults and joints as analogous in a 
geometric sense. As such. the approach is completely 

general and should be applicable to either discontinu- 
ity. However. studies on additional fault and joint 

datasets will be necessary to verify this view. 

The paper begins with a discussion of L&y-stable 
distributions and the relationship of multifractals to 
strain. An introduction to the modelling of (multifrac- 
tal) strain distributions using multiplicative cascades 
follows. Then. three example stochastic simulations 
with diKerent strain models are used to illustrate frac- 
ture spatial clustering. Finally, a multiplicative cascade 
is used to generate a strain distribution based on infor- 
mation from a horizontal well. Simulation of stochas- 

tic fractures on this cascade is shown to have spacing 
characteristics similar to those found in the well. 

SCALING DISTRIBUTIONS 

Scaling means that an object looks the same regard- 
less of its size. Conversely. an object whose true size 
cannot be determined by visual examination is said to 
have scaling properties. Many geological objects exhi- 
bit scaling characteristics and require some measure of 
scale when photographing or otherwise depicting 
them. Without a scale bar it is dificult to definitively 
identify the size of the object. 

The geometric similarity between fault arrays occur- 
ring at different scales has been recognised for some 
time (Tchalenko, 1970). This similarity reflects the 
mechanical processes that operate at all scales. 
Mandelbrot (1982) points out that scaling must be 
defined independent of geometry. In this sense, scaling 
refers to identical statistical distributions that differ 
only by a scale factor. L&y-stable distributions satisfy 
this necessary condition for scaling (Feller, 197 1). 
These distributions have power-law tails where for 
large I, the probability of encountering a size L > I is 
Pr(L > I) w I? with 0 < r < 2. 

Symmetric L&y distributions have probability den- 
sity 

/ 

x 
/j(.\>) = 71-l exp[-( Cli)‘] cos(ks) dli (1) 

0 

characterised by two parameters, the L&y index. x, 
lying in the range 0 < 3 I 2, and c’, a parameter that 
describes the width of the distribution (Painter ct r/l., 
1995). When x = 2 the L&y probability density is 
equivalent to a Gaussian distribution. Small r~ values 
correspond to broader distributions with longer tails 
and more extreme values. Samples from the extreme 
parts of the tails can lead to physically unrealistic 
values when attempting to tit L&y distributions to real 
data. Such random samples of L&y distributions can 
extend beyond the range of the empirical data requir- 
ing truncation of the sample distribution in order to fit 
the data (Mantegna and Stanley, 1995). Random 
sampling of symmetric L&y distributions (Mantegna, 
1994) with zero mean is used throughout the paper. 
These values are taken to be logarithmic and must be 
exponentiated prior to comparison with empirical 
data. 

Most empirical data interpreted to bc fractal will 
contain values that deviate from strict power-law beha- 
viour in the range of smaller-size values of the particu- 
lar dataset. When plotting log cumulative frequency vs 
log size. the deviation is manifest as a flattening of the 
curve so that the data distribution resembles an 
inverted hockey stick. This flattening is usually taken 
to be an artefact of resolution or bias (Heifer and 
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Fig. I. L&y-stable fit to an experimental dataset. Fracture apertures (circles) from measurements along a horizontal well- 
bore fit with a Levy-stable distribution (solid line) with x = 1.85 and c‘ = 0.66. Hypothetical distribution for 5000 aper- 
tures (dashed line) and similar Levy parameters. The dashed distribution follows that of the solid one to an aperture of 
0.06 mm at which point it continues along the straight log@og trend as the solid line begins to deviate. The inability of 
the wellbore data to extend to the smaller apertures of the projected solid line fit reflect resolution limits of the wellbore 
data collection. Inset shows wellbore data plotted as cumulative probability. Note that 90% of the data conform quite 

well to a log-normal distribution. Just the (large aperture) tail deviates, consistent with Levy-stable behaviour. 

Bevan, 1990; Watterson et al., 1996). Although resol- 

ution dependency is a factor to some degree, the pro- 
posal made here is that the deviation is a reflection of 
random sampling from an underlying Levy-stable 

probability distribution. Because Levy-stable distri- 
butions asymptotically approach power-law behaviour 
they are able to account for both the empirical data 
points that follow power-law behaviour and those that 
deviate from it. To illustrate this, consider an empirical 

fracture aperture dataset, collected along a horizontal 
wellbore with an electrical imaging tool, that follows 
approximate power-law behaviour for almost two 
orders of magnitude (Fig. 1). Deviation of the data 

from this behaviour occurs approximately at an aper- 
ture of 0.05 mm. Smaller values below this point 
account for 80% of the data. By random sampling of 

a Levy distribution with I = 1.85 and C = 0.66 it is 
possible to fit 99% of the data (Fig. I; solid line). If it 
were possible to double the number of samples, for 
example, by having an imaging tool that covers a lar- 
ger percentage of the borehole, then a similar-shaped 
distribution enlarged on both axes will result (Fig. 1; 
dashed line). Some datasets, when examined over a 
large range of different scales, exhibit a deviation from 
power-law behaviour as evidenced by a flattening of 
data on the log-log plots ut all stcrles (Castaing et al., 

1996; Odling, 1997). In some cases, it is hard to 
explain this deviation as being a function of resolution 

because data sampling is intensive and the area of ob- 
servation is small (Schlische et al., 1996; Knott rt ul., 
1996). The evidence cited here suggests that the statisti- 
cal character of fracture attribute empirical data is 
fully consistent with Levy-stable distributions. 

One final aspect of Levy-stable distributions can be 
illustrated by plotting the aperture data as cumulative 

probability (Fig. 1; inset) instead of on logglog axes. 
It can be seen that approximately 90% of the data 
closely fits a log-normal distribution. Deviation from 
log-normality occurs in the tails. At very small aper- 

tures the deviation reflects limited resolution, but large 
values characterise the high end (power-law) tail of the 

Levy distribution. Interpreting such data as log- 
normal, despite the deviation in the large value tail, 

is common (e.g. Einstein and Baecher, 1983). I will 
return to a further comparison of log-normal and 
Levy distributions later in the paper. It should be clear 
that random sampling of Levy-stable distributions is 
capable of creating cumulative distributions that have 
power-law character and account for empirical obser- 
vations of samples deviating from strict power-law 
behaviour. Furthermore, additional sampling of the 
same distribution leads to self-similar scaling beha- 
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viour. By varying the parameters CI and C’, distri- 
butions with a range of power-law slopes are possible. 
This flexibility is used below to create widely different 
multifractal distributions. 

INCORPORATING SPATIAL DISTRIBUTION 
INTO STOCHASTIC MODELS 

Stochastic. mod& und,fracture spatial distrihutior~ 

Rives et al. (1992) 

et ~1.. 1995) show a similar organisation with 
increasing strain. 

In modelling the interaction process, Rives et (~1. 
(1992) add joints randomly along a line trace, but 
reject them if they land too close to an existing joint. 
This was taken to be an analogue of the stress sha- 
dowing that large joints impose upon a zone surround- 
ing the joint (Pollard and Segall, 1987). Rives 

;1S 

e = Al = C/J, (4) 

where the summation is over all individual fracture 
apertures, pi. The fractional elongation, E;, for i frac- 
tures is then 

1:; = /LJC& (5) 

Thus, equations (2) and (5) have the same form indi- 
cating that the measure defined in equation (2) is the 
fractional elongation for a fractured interval. 

Processes with complex interactions over many 
scales often leave signatures that have multifractal 
characteristics. One phenomenological approach to 
represent these characteristics is with multiplicative 
cascades. These multifractal signatures are defined by 
measures that increase in variability with a decrease in 
the scale size. Conceptually. one can imagine being 
able to observe only large displacement faults at a 
coarse resolution. but as the scale of observation 
decreases (increasing resolution), smaller faults become 
apparent leading to greater variability. At each level of 
improving resolution the increasing variability is mani- 
fest in the widening of the displacement statistical dis- 
tribution as smaller and smaller values are observed. 
In the cascade model, the increase in variability is 
introduced over the different scales by multiplication. 
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Fig. 2. Multiplicative strain cascade illustrated at three different levels. As the cascade proceeds a unit strain is continu- 
ously partitioned at each level. At the first level the unit interval is divided in half and the bulk of the strain is parti- 
tioned between 0 and 0.5. At level 4 the unit interval is divided into 16 cells with the largest strains residing from 0.2 to 

0.4 and from 0.4 to 0.5. The strain distribution continues to be refined with additional cascades. 

A simple 1-D multiplicative cascade model for strain 
distribution starts with a strain, PO, on a line of unit 
length. Normalise the strain so that PO= 1. Two non- 
negative random values, P and P’, are drawn from a 
unit mean distribution, ensuring that P # P’. For the 
first level, subdivide the unit line into two equal parts. 
Redistribute the strain, PO, on each segment of the 
bisected unit line such that one segment has strain 
Po*P and the other segment has strain Po*P’. Take the 
redistributed strains and normalise them so that 
(Po*P) + (Po*P’) = 1. This procedure of bisection and 
strain redistribution continues for n (n = 1,2,3,. . .) 
levels of subdivision. An example of subdivision and 
redistribution is shown in Fig. 2 for several different 
levels. At any level of subdivision, n, the line is divided 
into 2” segments. Random values necessary to redistri- 
bute strain at all levels are chosen from a single Levy 
distribution. The multiplicative process can be thought 
of as an improvement in resolution. Strain measured 
with a low degree of fidelity (e.g. at level 1) is broadly 
distributed. As resolution is increased (level > 1) the 
partitioning of strain becomes clearer (Fig. 2). 

To illustrate how cascades reflect the input par- 
ameters and, ultimately, affect the spatial distribution 
of fractures, three cascades with divergent character- 

istics are created. In one model, a Levy-stable distri- 
bution with c( = 1.98 and C = 0.22 is used to 
redistribute strain at each level of the cascade. These 
values lead to a homogeneous strain/cell spatial distri- 
bution because the large value of CI and the small value 
of C mean that the variance of the random values cho- 
sen for the cascade will be small. In turn, this means 
that differences among strain/cell magnitudes at any 
level of subdivision will also be small. The second cas- 
cade also uses a Levy-stable distribution to reappor- 
tion strain, but one that leads to a heterogeneous 
strain/cell spatial distribution. The heterogeneous 
strain cascade has Levy parameters u = 1.85 and 
C = 0.66. The third model is intermediate to the other 
two and generated using a Levy distribution with 
CI= 1.9andC=0.4. 

Each cascade continues for nine levels, resulting in 
512 cells for the final step. Differences between hetero- 
geneous and homogeneous cascades are significant 
(Fig. 3). Maximum and minimum strain/cell values in 
the homogeneous cascade differ by less than a factor 
of 10. In the heterogeneous cascade strain/cell values 
vary over eight orders of magnitude. Approximately 
8% of the strain/cell values in the heterogeneous cas- 
cade are larger than the largest magnitude strain/cell 
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Fiz. 3. Results for homogeneous and heterogeneous cascades after nine levels. The homogeneous cajcades (solid line) 
result m minimum variability m strain measures:ccll. Just the opposite is found for the heterogeneous cascade (dotted 

lint) which has a high degree of variability in strain measures. 

of the homogeneous cascade. Conversely, 56% of the 
heterogeneous strain/cell values are smaller than the 
smallest strain/cell value in the homogeneous cascade. 
In general, the heterogeneous cascade can be described 
as intermittent, with very large strain concentrations 
interspersed with areas of very low strain. 

The three multiplicative cascade examples are used 
to illustrate the stochastic modelling technique and the 
resulting differences in fracture spacing. The simu- 
lations are one-dimensional (as are the cascades) and 
can be thought of as representing a scan line through 
some reservoir interval. The basic approach is to add a 
fracture, of given aperture. to a cell along the modelled 
strain measure distribution where it will ‘fit’. For an 
aperture to tit in a cell. the aperture must be smaller 
than the strain measure in the cell. For these examples. 
fracture apertures are chosen from a L&y-stable distri- 
bution with x = 1.85 and c’ = 0.66 (Fig. 1). For com- 
patibility with the strain distribution. the apertures. /I,, 
associated with the simulated fractures are normalised 
such that Clc, = 1 (i = I ,2,3.. , m) where 1~1 corre- 
sponds to the number of fractures being simulated. All 
of the fracture simulations in this section use the same 
aperture distribution. so that the contrast in cascades 
is the sole variable. Resulting variation in spacing dis- 

tribution is. therefore, a function only of differences in 
the spatial distribution of strain/cell. 

Each simulation begins with the largest aperture and 
continues in descending aperture size order. Every cell 
in the highest order level (here 9 levels, 5 12 cells) cas- 
cade is tested to see if the strain measure in the cell 
exceeds that of the fracture aperture. Three possibili- 
ties exist: (I) the aperture is larger than the measure 
value in every cell at this level, (2) the aperture exceeds 
the measure value in all cells except one. (3) the aper- 
ture ‘fits’ in multiple cells. In the first case, cells in the 
next smallest level (level II - 1, where II is the present 
level) are then tested. The procedure continues to 
smaller levels until a cell value is found that exceeds 
the aperture value. For the second possibility. if the 
aperture fits in a single cell at the level, then the frac- 
ture is located randomly within this cell. In the case of 
multiple cells having measures that (at a single cascade 
level) exceed the aperture value, one of the cells is cho- 
sen at random and the fracture placed within that cell. 
Once a fracture is placed in a cell. the strain measure 
in the cell is reduced by the aperture magnitude prior 
to adding the next fracture. 

There is a trade-off between the number of cascade 
levels and the accuracy in placing a fracture. A greater 
number of cascades requires more computer storage 
and search time testing strain measure values in cells. 
If. however, the cell sizes are too large, then the spa- 
cings begin to reflect the randomness of locations 
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Fig. 4. Locations of 50 simulated fractures (dotted lines) on heterogeneous cascade. For clarity strain measures/cell (solid 
line) are shown for only 128 cells. Fractures are clustered on the cells containing the largest strain measures. Different 

realisations yield very similar results. 

within cells. In the limit of only one cell (i.e. all frac- 
tures placed randomly), this reduces the spacing distri- 
bution to a Poisson model. Because the fractures are 
placed at random within cells, spacings smaller than 
the smallest cell size should be viewed with caution. 

As an initial comparison, the location of 50 simu- 
lated fractures (Fig. 4; dotted line) are plotted on the 
unit line and compared to the heterogeneous strain 
measures (Fig. 4; solid line) when the entire interval is 
divided into 128 cells. There is a strong correlation 
between the fracture locations and the maximums in 
the strain/cell values. Clustering among the fractures is 
a result of the sparse occurrence of large strain/cell 
values along the interval. Intermittency of the large 
values is necessary for clustering to occur. Additional 
realisations will lead to minor differences in the lo- 
cation of the fractures, but, in general, the picture will 
not change significantly. 

A set of 50 fractures were also simulated on the 
homogeneous strain cascade (Fig. 5). The distribution 
of fractures in this cascade is quite different than for 
the heterogeneous cascade. Here, the fractures are dis- 
tributed more evenly (almost periodic) over the inter- 
val. There is little correspondence between maximum 
strain/cell values and the presence of a fracture. At 
some sites the fractures actually coincide with the 

troughs. Another realisation with this cascade could 
result in significantly different fracture locations, but 
not in the spacing distribution. 

Other sets of simulations were run for each of the 
three cascades using 250 and 500 fractures with the 
intent of comparing fracture spacing characteristics. 
Distance between adjacent fractures was measured for 
all simulated fractures and tabulated in log-log cumu- 
lative frequency plots. For both the heterogeneous cas- 
cade and the intermediate cascade, fracture spacing 
distribution is found to have a logglog linear portion 
corresponding to a power-law or fractal distribution 
(Fig. 6). For the heterogeneous cascade this relation- 
ship continues for less than two orders of magnitude 
and has a slope (fractal dimension) of -1.2. The inter- 
mediate cascade has a slope of about -2.1, steeper 
than that of the heterogeneous cascade. At small spa- 
cing values both curves flatten as is typically seen in 
field data. The fractal dimension for fracture spacing 
was similar for both 250 and 500 fracture simulations 
in each of the two cascades. A different distribution 
function was found to describe the spacing character- 
istics from fracture simulations on the homogeneous 
cascade. This simulation yields a spacing distribution 
that plots close to negative exponential (Fig. 7). 
Attempts to fit a log-log slope to less than 100 points 
of this distribution produces a value of -4. 

Differences in the characteristics of the spacing dis- 
tributions are a direct consequence of the spatial distri- 
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Fig. 5. Locations of 50 simulated fractures (dotted lines) on homogeneous cascade. For clarity slrain measuresjcell (solid 
line) are shown for only 128 cells. Unlike the heterogeneous cascade fractures here are evenly distributed. The small 

differences between strain measure~cell magnitudes result in some fractures being located in valleys between peaks. 

Fracture Spacing (normalized) 

Fig. 6. Spacing distribution functions for 500 simulated fractures using heterogeneous and Intermediate cascades. Both 
distributions have power-law slopes and flattening of the slopes at smaller spacing values, characteristics often found in 
natural examples. The heterogeneous cascade leads to a smaller spacing slope reflecting more fracture clustering than is 

found for the fracture distribution from the intermediate cascade. 
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Fig. 7. Spacing distribution functions for 500 simulated fractures using the homogeneous cascade. The resulting distri- 
bution function is close to negative exponential. The steep part of the curve reflects the similar distance (almost periodic) 

between adjacent fractures. 

bution of strain/cell in each cascade. In the homo- 
geneous cascade, where little difference exists among 
strain/cell values, there is no strong preference for 
locating the fracture apertures being simulated in any 
particular cell on the grid. In a situation where the 
strain/cell values are uniform (i.e. no difference among 
values) placement of fractures is random and leads to 
a negative exponential spacing distribution. With the 
small differences found in the homogeneous cascade 
there are weak preferred locations resulting in an ap- 
proximate negative exponential spacing distribution. 
As the strain/cell values become increasingly intermit- 
tent, approaching the partitioning of the heterogeneous 
cascade, spacing distribution becomes broader with 
small spacings reflecting fracture clustering and large 
spacings reflecting intercluster intervals. Characteristic 
of this broadening distribution is the power-law re- 
lationship apparent for the large spacings (Fig. 6). As 
discussed later in this paper, the log-log slope of this 
line is directly related to the clustering or intermittency 
of the strain/cell distribution. 

Comparison to wdl datu 

The previous section dealt with the simulation of 
fractures for hypothetical strain/cell spatial distri- 
butions. As a further test of the simulation technique, 
a multiplicative cascade is created that is consistent 
with strain/cell values using fracture apertures from an 

actual well. Fractures are simulated along a line and 
the spacings compared with those measured from the 
well. The well data are from one of several horizontal 
wells that intersect a fracture system in a carbonate 
reservoir (Belfield and Sovich, 1995). 

Generation of the strain/cell measures was done 
with a multiplicative cascade using a Levy distribution 
with CI = 1.9 and C = 0.3, values similar to the inter- 
mediate model from the previous section. The Levy 
parameters were determined by first dividing the well- 
bore into 512 equal size cells and tabulating normal- 
ised aperture measures in each (Belfield, 1994). Then 
testing sets of parameters through nine levels of cas- 
cade until finding a distribution of strain measures 
that compare favourably to the distribution of strain/ 
cell measures from the actual well data (Fig. 8). 
Because 2500 fractures were measured in the horizon- 
tal well and simulating a similar number is necessary 
for comparison, the strain measure cascade was 
extended for another two levels creating 2048 cells. 
With this cascade (Fig. 9) there is a difference of four 
orders of magnitude between the smallest strain/cell 
values and the largest. 

On this template of 2048 cells, 2500 fractures were 
simulated and the distance between adjacent fractures 
measured. The resulting spacing values show reason- 
able agreement with those of the actual data (Fig. 10). 
The underestimate of intermediate spacings around 
lop4 (Fig. 10) of the simulation may reflect two fac- 
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Fig. 8. Normaliscd strain measures (circlea) uere created from horkontal well fracture aperture data using 512 cells. 
Data were fit with a nine level multiplicative cascade using random numbers from a L&y-stable distribution (:! = I .9, 

C’ = 0.3). The data arc approximately log-normal. 

0.006 + 

0.005 

0.004 

0.003 

0.002 

0.001 

0 

500 1000 1500 

Number of Cells 

Fig. 9. Spatial distribution of simulated strain measurcs:cell for 2048 cells on a unit interval. The distribution ij the result 
of expanding the cascade in Fig. 7 by another two levels. This spatial distribution and strain measurc:cell magmtudcs 

resemble that of the Intermediate cascade discussed above. 
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Fig. 10. Comparison between spacing of fractures from horizontal well (circles) and simulated fixtures (solid line). 
Although the fit for 2500 fractures appears reasonable it can probably be improved by extending the cascade by another 

one or two levels. 

tors. One is the potential for an insufficient number of 
cells in the cascade. Because the simulation locates 
fractures at random within a cell, more than one frac- 
ture per cell will result in a greater number of small 
spacings and a concomitant decrease in intermediate 
spacings. The other factor is that all random multi- 
pliers have been chosen from a single distribution. In 
effect, this makes each level of the cascade self-similar. 
This may be inconsistent with real data where self-affi- 
nity may be more appropriate (Jackson and 
Sanderson, 1992). However, because no special 
attempt was made to very accurately match the 512 
cell cascade to the well data and because another two 
levels of cascade were added on, the fit is considered 
satisfactory. 

CLUSTERING AND LOG-NORMAL 
DISTRIBUTIONS 

The simulations demonstrate that it is possible to 
generate clustering based on strain spatial distri- 
butions. Contrary to expectations (Gillespie et al., 
1993; Nicol et al., 1996), the ability to characterise 
clustering by parameters other than box-dimension 
(Barton, 1995) has been available, but unrealised. The 
degree of clustering is quantifiable using the slope 

(fractal dimension) of spacing vs cumulative frequency 
on a logglog plot (e.g. Fig. 6). Small (absolute) values 
of the slope indicate a high degree of clustering as 
strain spatial distribution becomes more intermittent. 
As the amount of clustering decreases, the value of the 
fractal dimension will increase. If the slope is steep 
(perhaps approaching a negative exponential fit) then 
the underlying strain distribution is relatively homo- 
geneous indicating a lack of clustering. Generation of 
a multiplicative cascade produces a scale-invariant 
strain measure spatial distribution. With the multi- 
pliers being chosen from a single Levy distribution, 
any interval (at one level) will resemble the whole dis- 
tribution at any other level. Thus, the spacing distri- 
bution function will have the same character at all 
scales. For spacing this means that power-law distri- 
butions will occur at all scales and the slopes will be 
approximately the same. 

Modelling of stochastic fractures using a template of 
spatially distributed strain measures leads to various 
distributions of fracture spacings. Missing from these 
spacing distributions is any mention of a log-normal 
distribution. Having shown earlier (Fig. 1) that a 
Levy-stable and log-normal distributions bear a close 
resemblance even when x < 2, I now show that log- 
normal distributions (i.e. Levy-stable distributions with 
SI = 2) having sufficiently large dispersion can resemble 
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Fig. 1 I. Results of fracture spacing from simulation using the heterogeneous cascade and plotted as cumulative prob- 
ability. Here the data could be interpreted as being log-normal. This is especially true for the largest 30% of the values. 
When plotted as log-log cumulative frequency (Fig. 6) these data appear to have a power-law slope. This seeming con- 

tradiction can he understood by recognising the large standard deviation indicated by the regression. 

power-law distributions (Montroll and Schlesinger, 

1982). 

Figure 11 is a cumulative probability plot of fracture 

spacing using the results from the fracture simulation 

with the heterogeneous cascade (Fig. 6). On these axes, 

a log-normal distribution will plot as a straight line. 

Deviation from a linear relationship is not large and it 

would not be unreasonable to call this ‘log-normal’ es- 

pecially for the large values that when plotted as log 

size vs log cumulative frequency constitute the power- 

law tail with a slope of 1.2 (Fig. 6). 

Several explanations are possible for spacing distri- 

butions interpreted to be log-normal. These include: 

(a) the data appear log-normal for the majority of the 

sample other than a small number of values (tails) that 

depart from log-normality (Fig. I); (b) the data can be 

log-normal, but with a large dispersion that makes the 

larger values appear ‘power-law’ when plotted as 
cumulative frequency on log--log coordinates (Fig. 6); 
(c) the data can be log-normal with small dispersion. 

In all cases the relationship can be fit by modifying 

parameters of L&y-stable distributions. It also demon- 
strates that when viewed in terms of L&y-stable distri- 

butions, log-normal and fractal distributions are not 

distinct, but part of a continuum being defined by 

different Lltvy parameters. 

DISCUSSION 

Studies of power-law joint or fault attributes 
measured at different scales have raised questions 
about how to relate deformation at varying scales and 
incorporate resolution dependency (Peacock and 

Sanderson, 1994; Peacock, 1996). The strain-based 
multiplicative cascade approach advocated here 

answers these questions with certain limitations. 
Resolution dependency is addressed through the num- 
ber of faults or fractures simulated, with larger num- 
bers being indicative of improved resolution. It is a 
necessary alternative to better known fractal simu- 
lation techniques of reservoir properties (Hewett, 
1986; Painter rt cd., 1995) where information is avail- 
able at a very small scale from well logs. Using this 
latter approach. the scaling character of a reservoir 
parameter (e.g. porosity) is interpolated using a single 
statistical moment (usually variance). Unlike porosity, 
however, only small numbers of faults or fractures are 
measured from either seismic or outcrop and extra- 
polation to smaller scales is necessary. This extra- 
polation is made using the multiplicative cascade 
technique with the assumption that the random multi- 
pliers come from a single L&y-stable distribution. Use 
of this assumption means that the resulting cascade 
measures are self-similar. 
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Examples of attributes measured at different scales 
show similar log cumulative frequency vs log size 
slopes (fractal dimensions) in some cases (Castaing et 
al., 1996; Odling, 1997), but variation in dimension in 
others (Yielding et al., 1996; Nicol et al., 1996). 
Understanding these differences is necessary to obtain 
some level of confidence in the ability to extrapolate to 
smaller scales. Preliminary suggestions (Yielding et al., 
1992) were that (log-log) extrapolation to core-scale 
could be done directly from the seismic data, however, 
further study has found this not to be the case 
(Yielding et al., 1996). 

Extrapolation of an attribute scaling distribution is 
usually done by extending the power-law relationship 
to smaller size values. This projected distribution, how- 
ever, is for the entire area covered by the attribute dis- 
tribution. Furthermore, belief that the same fractal 
dimension will exist in a subarea implies that the attri- 
bute is self-similar. A less restrictive model is for the 
fractal dimensions defined by log-log cumulative fre- 
quency relationship to vary spatially, meaning that the 
attribute is self-affine. If a large area with a given log- 
log slope is divided into smaller areas, each subarea 
can have a fractal dimension that differs both from 
that of the large area and other subareas (Belfield, 
1992). Averaging of the fractal dimensions in all of the 
subareas seems to yield the value for the extended 
slope. The additive nature of Levy-stable distributions 
is such that by creating a union all of the attribute 
data in the subareas (even if the subareas have Levy 
distributions with different dimensions) in a single plot 
will result in a fractal dimension equivalent to that of 
the extended slope. This observation implies that pre- 
diction of an attribute distribution at a smaller scale 
requires an understanding of the spatial characteristics 
of the scaling structure. 

With the self-similar cascade process used here, 
resultant spacing distribution will be approximately 
the same at all scales. This restrictive criteria can be 
moderated by choosing random multipliers from differ- 
ent (Levy-stable) distributions. The result will be a 
self-affine spacing distribution that varies with scale. 
Still problematical in this endeavour is the range of 
scale (levels of cascade) that the strain measures can 
be considered self-similar and when do they become 
self-affine. Answers to this question may lie in studying 
multiple reduced scale subareas from extensive data 
sets (Castaing et al., 1996; Watterson, et al., 1996; 
Odling, 1997). 

CONCLUSIONS 

Numerous examples indicate that faults and frac- 
tures follow some type of geometrical self-organisation 
and are not distributed randomly in space. This 
requires non-Poissonian techniques to spatially distri- 
bute stochastic faults and fractures in realistic geome- 

tries. One approach is to use a strain distribution 
model as a spatial guide or template for the simu- 
lation. In this model, strain is multifractal and gener- 
ated via a multiplicative cascade. This insures a scale- 
invariant structure of the resulting fracture or fault 
geometry. Random values for the cascade come from 
Levy-stable distributions, the parameters of which 
determine the (self-similar) characteristics of the strain 
distribution. Levy distributions are also shown to fit 
attribute distribution functions and are used to sample 
aperture sizes in the stochastic modelling. 

Spacing distribution functions ranging from approxi- 
mately exponential to power-law depend on the spatial 
partitioning of strain. Simulation of stochastic frac- 
tures on a homogeneously distributed strain measure 
template leads to approximate exponential spacing dis- 
tribution, but a power-law spacing distribution is 
found by using a heterogeneous strain measure. When 
plotting spacing as log-log cumulative frequency, the 
slope (fractal dimension) quantifies the degree of clus- 
tering. Small fractal dimensions are indicative of more 
clustering than large ones, the degree of clustering 
decreasing with an increase in fractal dimension. In 
this sense an estimate of fractal dimension of fracture 
spacing based on core, outcrop, or well log data pro- 
vides a better characterisation of spatial distribution 
than does other statistics such as average spacing. 
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